Image Segmentation with Multidimensional Refinement Indicators

نویسندگان

  • Hend Ben Ameur
  • Guy Chavent
  • Francois Cl'ement
  • Pierre Weis
چکیده

We transpose an optimal control technique to the image segmentation problem. The idea is to consider image segmentation as a parameter estimation problem. The parameter to estimate is the color of the pixels of the image. We use the adaptive parameterization technique which builds iteratively an optimal representation of the parameter into uniform regions that form a partition of the domain, hence corresponding to a segmentation of the image. We minimize an error function during the iterations, and the partition of the image into regions is optimally driven by the gradient of this error. The resulting segmentation algorithm inherits desirable properties from its optimal control origin: soundness, robustness, and flexibility. Key-words: image segmentation, adaptive parameterization, inverse problem, optimal control ∗ FSB and ENIT-LAMSIN, University of Tunis, BP 37, Le Belvédère, 1002 Tunis, Tunisia. [email protected]. † Projet Estime. {Guy.Chavent,Francois.Clement,Pierre.Weis}@inria.fr. in ria -0 05 33 79 9, v er si on 3 11 M ay 2 01 1 Segmentation d’image par indicateurs de raffinement multidimensionnels Résumé : Nous transposons une technique de contrôle optimal à la segmentation d’image. L’idée est de voir la segmentation d’image comme un problème d’estimation de paramètre où le paramètre à estimer est la couleur des pixels de l’image. Nous utilisons la technique de paramétrisation adaptative qui construit itérativement une représentation optimale du paramètre en rgions uniformes formant une partition du domaine, et correspondant ainsi à une segmentation de l’image. Nous minimisons une fonction d’erreur au cours des itérations, et le partitionnement de l’image en régions est guidé de faon optimale par le gradient de cette erreur. L’algorithme de segmentation résultant hérite des bonnes propriétés de son origine contrôle optimal : fondement, robustesse et flexibilité. Mots-clés : segmentation d’image, paramtrisation adaptative, problme inverse, contrle optimal in ria -0 05 33 79 9, v er si on 3 11 M ay 2 01 1 Image Segmentation with Multidimensional Refinement Indicators 3

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Multidimensional Refinement Indicators Algorithm for Optimal Parameterization

The estimation of distributed parameters in a partial differential equation (PDE) from measures of the solution of the PDE may lead to underdetermination problems. The choice of a parameterization is a frequently used way of adding a priori information by reducing the number of unknowns according to the physics of the problem. The refinement indicators algorithm provides a fruitful adaptive par...

متن کامل

Modified CLPSO-based fuzzy classification System: Color Image Segmentation

Fuzzy segmentation is an effective way of segmenting out objects in images containing both random noise and varying illumination. In this paper, a modified method based on the Comprehensive Learning Particle Swarm Optimization (CLPSO) is proposed for pixel classification in HSI color space by selecting a fuzzy classification system with minimum number of fuzzy rules and minimum number of incorr...

متن کامل

Performance Analysis of Segmentation of Hyperspectral Images Based on Color Image Segmentation

Image segmentation is a fundamental approach in the field of image processing and based on user’s application .This paper propose an original and simple segmentation strategy based on the EM approach that resolves many informatics problems about hyperspectral images which are observed by airborne sensors. In a first step, to simplify the input color textured image into a color image without tex...

متن کامل

Unsupervised Texture Image Segmentation Using MRFEM Framework

Texture image analysis is one of the most important working realms of image processing in medical sciences and industry. Up to present, different approaches have been proposed for segmentation of texture images. In this paper, we offered unsupervised texture image segmentation based on Markov Random Field (MRF) model. First, we used Gabor filter with different parameters’ (frequency, orientatio...

متن کامل

Quantitative Comparison of SPM, FSL, and Brainsuite for Brain MR Image Segmentation

Background: Accurate brain tissue segmentation from magnetic resonance (MR) images is an important step in analysis of cerebral images. There are software packages which are used for brain segmentation. These packages usually contain a set of skull stripping, intensity non-uniformity (bias) correction and segmentation routines. Thus, assessment of the quality of the segmented gray matter (GM), ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010